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Abstract

In this note numerical sensitivity of a wave finite element approach and its post processing for group velocities and

energy velocities estimation is dealt with. Precisely, aliasing effects is discussed first. Calculation of guided waves group

velocity through a numerical procedure is given. A wave track versus frequencies criteria is employed. Energetics of multi-

mode guided wave propagation is also discussed. Analytical expressions of energy velocities are provided. Energy velocities

are compared to group velocities, and the sensitivity of energy velocities to the finite element system characteristics is

discussed.

r 2007 Published by Elsevier Ltd.
1. Introduction

Calculations of guided wave energy and group velocities in complex waveguides is the main concern of this
communication. In a recent paper [1] a numerical approach was offered in order to extract dispersion curves
for guided uniform structures. The proposed approach was implemented in a finite element code and enables
numerical extraction of guided wavenumbers and deformed shape characteristics. A similar approach was
very recently studied by Mace [2], whilst Finnveden [3] extended a spectral finite-element-like approach for
wavenumber estimation in complex homogeneous and uniform waveguides.

The present note completes the above-mentioned paper [1] and addresses two questions:
�
 Numerical sensitivity of the approach and aliasing.

�
 Calculation of guided waves group velocity (through a numerical procedure) and energy velocity (through

guided structure energetics).

The numerical sensitivity of the propagation features is covered first in this note. Then the study focusses on
the definition of the geometrical characteristics of the modeled structures. Here, the purpose is to fix, for a
given propagation length, the highest wavenumber to be extracted. Aliasing effects connected to this question
support our choice and offer some rules to be considered for a safe use of the approach.
ee front matter r 2007 Published by Elsevier Ltd.
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Energy and group velocities of such complex guided waves are thus analyzed. Group velocities are extracted
through a finite difference calculation associated with a necessary numerical classification criterion for a wave
track purposes. The proposed criterion is based upon symplectic properties of the spectral problem. It allows
propagating branches to be rigorously identified as frequency increases. Calculated group velocities are then
compared with estimations of energy velocities. The latter requires energy flow and stored energy densities to
be expressed. Some of our results extend the work offered in Refs. [4,5] among others. Some numerical
experiments are then presented to complete the discussion.

2. Brief outline of the formulation

2.1. Finite element wave propagation in a straight structure

The dynamics of straight elastic and dissipative structures is studied. A sample straight structure is
illustrated in Fig. 1: in the present framework, the system is assimilated to a set of identical subsystems,
connected along the principal direction, say axis x, and whose left and right cross-sections (x-axis description)
are denoted as L and R, respectively. The length of each subsystem, along axis x, is denoted as d. The
formulation is based on the finite element model of a typical subsystem, as illustrated in Fig. 1, and whose
kinematic variables, displacements and forces, are written as q and forces F, respectively. Mesh compatibility
at coupling interfaces between subsystems is assumed, implying that the left and right cross-sections of the
given subsystem contains the same number of degrees of freedom, say n. The dynamic equilibrium equation of
this subsystem, at frequency o=2p, can be stated as follows [6]:

DLL DLR

DRL DRR

" #
qL

qR

" #
¼

FL

FR

" #
, (1)

where ðn� nÞ matrix Dij ¼ Kij � o2Mij ðfi; jg 2 fL;RgÞ stands for the ij component of the dynamic stiffness
operator condensed on the left and right cross-sections, namely D [6]. Here, K and M stand for the stiffness
and mass matrices, respectively. Dissipation can be considered through standard FEM models. According
to Bloch’s theorem [7], the dynamics of the global waveguide can be expanded on specific wave solutions of
the form

qR ¼ mqL (2)

and

FR ¼ �mFL, (3)

where m denotes the propagation coefficient. Expressions (2) and (3) lead to an eigenvalue problem. Indeed,
inserting Eqs. (2) and (3) into Eq. (1) leads to the following spectral problem [1]:

ðDRL þ miðDLL þDRRÞ þ m2i DLRÞðUqÞi ¼ 0, (4)
Fig. 1. Typical thin walled structure.
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where fðmi; ðUqÞiÞgi¼1;...;2n stands for the wave modes of the global system. A modified and well-conditioned
format of the spectral problem can also be obtained. For this purpose, the use of a state vector representation
is an interesting alternative to the spectral analysis which must be performed in the context of the
numerical dispersion curve extraction (see Refs. [6,8] for detailed discussions). Indeed, given the following
matrices:

S ¼
�D�1LRDLL �D�1LR

DRL �DRRD
�1
LRDLL �DRRD

�1
LR

" #
(5)

and matrix J, defined by

J ¼
0 I

�I 0

� �
, (6)

it can be readily shown that:

STJS ¼ J (7)

meaning that S is symplectic [6]. Ultimately, a spectral problem can be established as

JUi ¼ miS
TJUi, (8)

which leads to

J�1S�TJUi ¼ miUi, (9)

and thus, considering that matrix S is symplectic (S�T ¼ JSJ�1 [6]),

SUi ¼ miUi. (10)

Here Ui ¼ ððUqÞ
T
i ðUFÞ

T
i Þ

T stands for the ith eigenvector of operator S, which is decomposed into ðn� 1Þ
displacements q and forces F wave components. The frequency response of the global system can be expressed
by expanding the kinematic variables of the considered subsystem on the basis of eigenvectors (see for instance
Ref. [9]):

qL

�FL

 !
¼

Uq
UF

" #
QL and

qR

FR

 !
¼

Uq
UF

" #
QR, (11)

where Uq and UF stand for the matrices of eigenvectors fðUqÞigi and fðUFÞigi, respectively [9], and where QL
and QR stand for the ð2n� 1Þ generalized coordinates evaluated for the left and right boundaries of the
subsystem, respectively. It has been shown in Refs. [10,11] that generalized coordinates QL and QR can be
related in this way

QR ¼
l 0

0 l�1

" #
QL, (12)

where l stands for the matrix of eigenvalues fmigi¼1;...;n. Note that the description provided by Eq. (12) is based
on the classification of the eigenvectors into incident and reflected waves (see Ref. [9]). Eqs. (12) and (11) will
be used for the estimation of energy velocities.

2.2. Aliasing effects

The practical implementation of the proposed method runs into two main problems. The first one is how to
fix the propagation distance, namely d (see Fig. 1). This gives the finite element modeling size whose value
cannot be completely arbitrary. The second problem is the pertinent frequency band under consideration.

Along the propagation axis, only one finite element is considered to simplify the formulation. The latter can,
however, be easily extended in order to take into account internal degrees of freedom. The chosen finite
element must then correctly represent a part of propagating wave along the propagation axis. So, through a
kind of Shannon space theorem, pertinent wavelengths or wavenumbers fkjgj are connected to the
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propagation distance through the following simple formula, for the jth propagating branch:

RefkjðoÞgo
p
d
. (13)

However, it should be mentioned that this value is too far removed from practical applications. Indeed, it is
expected that wavenumbers prediction deviations in wavenumber predictions start at around 6 to 10 elements
per wavelength often used in FEM calculation. So, errors and deviations are expected to appear around
RefkjðoÞgoðp=3dÞ or RefkjðoÞgoðp=5dÞ limit. Hence, large values of d will limit the wavenumber validity
domain, and consequently the given frequency band leading to aliasing. Small values of the propagation
distance d will lead to two difficulties. The first one is connected to the nature of the employed finite elements.
Depending on the cross section shape, d should respect the strain and stress intrinsic limitations. For instance,
if thin shells are employed, d must respect the given FE element limitations and their length d should be many
times the thickness of the considered elements. The second difficulty is mainly numerical. Small propagation
distances will lead to eigenvalues close to unity. Asymptotically, when d tends toward 0, the expression leading
to wavenumbers kj from given propagation constants lj, namely:

kjðoÞ ¼ �
lnðljÞ

i � d
(14)

becomes singular. Moreover, for weak values of length d, spectral results become very sensitive to numerical
errors.
3. Group velocities and energy velocities

3.1. Group velocity expression

The group velocities associated with the guided waves are first discussed. The group velocity of a purely or
lightly damped propagating branch j can be readily expressed from the calculated wavenumbers as follows:

c
g
j ðoÞ ¼

qo
qðRefkjgÞ

. (15)

However the use of this basic formula in the context of multimode guided waves results in a major difficulty.
Indeed, the spectral problem solved here provides a set of discrete unclassified propagating branches and
associated wavenumbers. Moreover, as the frequency increases, the propagating branches can change
drastically leading to erroneous evaluation of wavenumbers versus frequency. A classification criterion for
wave track purposes and thus, for a safe use of the group velocity expression, is proposed in Ref. [11] as
follows: For wave modes j and m defined at frequency o, such that mmðoÞ ¼ 1=mjðoÞ, and for Do sufficiently
small, find wave mode j at frequency oþ Do such that

AjðoÞ ¼ ðUmðoÞÞ
TJnUjðoþ DoÞ (16)

is maximized. It should be noticed that wave track index optimization is easier for dissipative cases, compared
with conservative ones. So, a very slight damping ratio is introduced as a rule in the wave extraction process to
facilitate wave track as well as incident/reflected wave classifications.

Frequency step Do must be sufficiently small, meaning that eigenvector Uj must vary weakly between
frequencies o and oþ Do; In practice, the criterion is verified when eigenvectors fUjgj are of the same order,
which means that they must be normalized in the same way.

The classification criterion coupled to the basic finite difference expression allows numerical evaluation of
group velocities for guided multimode wave propagation such that at each frequency step:

c
g
j ðonÞ ¼

Do
2

1

Refkjðonþ1Þg �RefkjðonÞg
þ

1

RefkjðonÞg �Refkjðon�1Þg

� �
. (17)

The given expression will be employed below as the reference estimation for the energy velocities to be given.
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3.2. Energy velocity expression

The calculation of energy velocities is covered in this subsection. It is a well-known physical property that
energy velocity is ‘‘often’’ equal to group velocity. The energy velocity is defined rigorously as the ratio
between energy flow (active power) and the total stored energy density (kinetic and strain energy densities).
The energy flow P evaluated on the left section of any given subsystem of the waveguide can be readily
established as follows [4]:

PðoÞ ¼
�io
4

qL

�FL

 !H

J
qL

�FL

 !
(18)

or equivalently, using modal expansion (11):

PðoÞ ¼ QH
LP

UQL, (19)

where PU stands for the wave energy flow matrix:

PU ¼
�io
4

Uq
UF

" #H

J
Uq
UF

" #
. (20)

Here, superscript H stands for the Hermitian (complex conjugate). Expression (19) is a standard description of
the active power and is given, for instance, by Miller and von Flotow [12] for a one-dimensional beam like
structure. In more recent papers, Langley [4,5] provide some definitions and discussions concerning the
properties of the energy flow matrix. The energy velocity associated with the jth propagating branch is then
given by

ce
j ðoÞ ¼

Pj

Tj þUj

, (21)

where Pj is the energy flow contribution of the jth wave to the net energy flowing through the cross section P

and where Tj and Uj stand for the kinetic and potential energy densities, respectively. Their sum obviously
defines the total energy density. The evaluation of the total energy density stored in the cross section can be
achieved in different manners. Indeed, both the stored kinetic energy density and the stored potential energy
density should normally be calculated. From the general theory of elasticity under the pure harmonic case,
many conclusions can be drawn concerning the wave energetics especially for unloaded uniform and undamped

media. Under harmonic conditions, it was established that the reactive power divergence is related to the
Lagrangian energy density, namely the kinetic energy density minus the potential energy density [13]. For a
single propagating wave, the reactive power is zero and thus the kinetic energy density and potential energy
density are equal, as are the time-averaged kinetic and strain energies stored in the system. This property will
be numerically checked in the context of the multimode wave propagation in the next section. Time-averaged
energy quantities are defined as follows:

~T ¼

Z
O

T dO; ~U ¼

Z
O

U dO. (22)

If the system length d is very small compared to the given wavelengths under interest, the kinetic energy
density weakly varies over a typical subsystem length, meaning that the kinetic energy density stored in the left
or right cross-section of the subsystem, namely T, can be simply related to the averaged kinetic energy stored
by the subsystem, namely ~T , through the simple first-order developed expression:

T ¼ ~T=d. (23)

Thus, observing that in the finite element context, kinetic energy ~T is written as

~T ¼
o2

4

qL

qR

" #H

M
qL

qR

" #
(24)
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leading to

T ¼
o2

4d

qL

qR

 !H

M
qL

qR

 !
. (25)

Observing that, according to Eqs. (11) and (12)

ð26Þ

leads to

T ¼
o2

4d
QH
LM

UQL, (27)

where MU stands for the wave mass matrix, given by

: ð28Þ
Fig. 2. Thin walled tubular tested structure.
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Furthermore, it can be also readily shown that the strain energy density can be expressed as

U ¼
1

4d
QH
LK

UQL, (29)

where KU stands for the wave stiffness matrix, given by

: ð30Þ

The given expression allows computation of the energy densities associated with each propagating branch and
provides, according to Eq. (21), a close and analytical expression of the energy velocity as follows:

ce
j ¼

4dPU
jj

o2MU
jj þ KU

jj

. (31)

If the equality between the wave kinetic energy density and the wave strain energy density is considered, then
the energy velocity expression becomes:

ce
j ¼

4dPU
jj

2o2MU
jj

. (32)
Fig. 3. Thin walled tubular tested structure: refined mesh tested case.
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Expressions (31) and (32) represent the explicit analytical expressions of energy velocities in the multimode
wave propagation case. In the following section, some numerical experiments are provided for validation
purposes.

4. Numerical experiments

The developments established in this study were implemented within a computer code and interfaced with
an FEM software. This allows a multimode wave propagation analysis for complex homogeneous and
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Fig. 4. Tubular structure, dispersion curves ðd ¼ 1 cmÞ.
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Fig. 5. Tubular structure, dispersion curve ðd ¼ 3 cmÞ: aliasing effects.
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uniform waveguides. For the sake of simplicity, a thin-walled tubular structure is fully tested here. This was
also studied in the author’s previous paper [1]. Figs. 2 and 3 show a typical subsystem of the structure. This
subsystem is meshed in finite element software using thin shell elements. Fig. 3 shows a refined mesh of the
tested subsystem. Here, a thin-wall steel case (r ¼ 7850 kg=m3; n ¼ 0:3 and E ¼ 2:1� 1011 Pa) is studied
Fig. 6. Kinetic energy density (continuous line) and strain energy density (dashed line) comparison: propagating branch (1)—compression

mode.
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numerically. The tube cross-section is 40mm by 60mm and the thickness is 2mm. For numerical issues and as
explained before a very slight damping ratio (of 0.0001 mass proportional) is introduced mainly to facilitate
wave track. In view of a parametric analysis, the system length d is chosen equal to 1 and 3 cm, respectively.
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Fig. 8. Kinetic energy density (continuous line) and strain energy density (dashed line) comparison: propagating branch (2)—second

extensional mode.
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4.1. Aliasing effects

The aim here is to illustrate the aliasing effects discussed above. Fig. 4 shows the dispersion curve of the
tubular structure over the frequency band ½0; 3000Hz� in the case of a weak subsystem length ðd ¼ 1 cmÞ. The
propagating branches shown are classified using the wave track index proposed in Eq. (16). For instance, the
propagating branch (number 1 in the figure) highlights the low-frequency (LF) compressional and non-
dispersive plane wave mode. The branches respectively numbered 3, 6 and 5 represent respectively cross-
section, extensional and a further cross-section propagating modes, respectively. Fig. 5 shows similar
dispersion curves but computed for a large subsystem length, d ¼ 3 cm, and in a relatively wide
frequency band ½0; 9000Hz�. The figure shows clearly the aliasing effects corresponding to the approximately
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Fig. 10. Group velocities (continuous line) and energy velocities (dashed line) comparisons ðd ¼ 1 cmÞ.
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33p wavenumber limit (corresponding to p=0:03) as given in Eq. (13). As shown above, deviations (due to
FEM errors) appear at approximately p=3� 0:03 which is the six element per wavelength rule in FEM
calculation.

4.2. Energy densities

Some wave kinetic and strain energy densities are also computed. Figs. 6–9 compare wave kinetic energy
density, provided by Eq. (27), to the wave strain energy density, provided by Eq. (29). The equality between
both quantities seems almost clear. Discrepencies between the strain and kinetic energy densities can be
explained by the slight damping introduced in the numerical simulations.
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Fig. 12. Group velocities (continuous line) and energy velocities (dashed line) comparisons, ðd ¼ 3 cmÞ.
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4.3. Group and energy velocities comparison: test with a small subsystem length

Here the group velocities and the energy velocities are computed for a small subsystem length ðd ¼ 1 cmÞ.
The group velocities are computed using expression (17), whilst the energy velocities are deduced from
expression (32). The comparisons show very good agreements between both definitions and confirm their
equality (Fig. 10).

4.4. Group and energy velocities comparison: test with a large subsystem length

In a large system length case ðd ¼ 3 cmÞ, Fig. 11 shows the dispersion curve extracted without any kind of
aliasing. Fig. 12 compares group velocities and energy velocities for the tubular structure given in Fig. 2 and
shows some deviations between the two quantities especially at higher frequencies. Fig. 13 confirms these
tendencies in the more refined mesh considered in Fig. 3. The energy velocity expression (32) seems to be quite
sensitive to the system length.

5. Conclusions

This study aims to complete the author’s previous paper [1] addressing the numerical sensitivity of the
proposed approach and its post processing for the estimation of group velocities and energy velocities. The
main results can be summarized as follows:
�
 Aliasing effects were discussed. The frequency band versus wavenumbers range was connected to the finite
element modeled subsystem for length d. Expression (13) provides a simple criterion to perform the
simulation. However, it should be pointed out that the parameter d must also be connected to the nature of
employed elements.

�
 The calculation of guided waves group velocities through a numerical procedure was explained. The main

concern here was the criterion of wave track versus frequencies. Expression (16) provides an efficient
indicator for that purpose.

�
 The energetics of multimode guided wave propagation were also discussed. Expression (18) gives the energy

flow formula in the wave space, whilst Eqs. (27), (29) provide an estimation of kinetic and strain
energy densities. Analytical expressions of energy velocities were provided in expressions (31) and (32).
Energy velocities were compared to group velocities, and the sensitivity of energy velocities to the finite
element system characteristics was shown.

Further investigations are in progress to enrich the content presented in this study to multi-layer waveguides,
to composite structures and to fluid–structure interaction problems.
References

[1] L. Houillon, M.N. Ichchou, L. Jezequel, Wave motion in thin walled structures, Journal of Sound and Vibration 281 (2005) 483–507.

[2] B. Mace, D. Duhamel, M.J. Brennan, L. Hinke, Finite element prediction of wave motion in structural waveguides, Journal of

Acoustical Society of America 117 (2005) 2835.

[3] S. Finnveden, Evaluation of modal density and group velocity by a finite element method, Journal of Sound and Vibration 273 (2004)

51–75.

[4] R.S. Langley, Wave evolution, reflection and transmission along inhomogeneous waveguides, Journal of Sound and Vibration 227 (1)

(1999) 131–158.

[5] R.S. Langley, A transfer matrix analysis of the energetics of structural wave motion and harmonic vibration, Proceeding of the Royal

Society of London A (452) (1996) 1631–1648.

[6] W.X. Zhong, F.W. Williams, On the direct solution of wave propagation for repetitive structures, Journal of Sound and Vibration 181

(3) (1995) 485–501.

[7] L. Brillouin, Wave Propagation in Periodic Structures, McGraw-Hill Publishing Company, New York, 1946.

[8] A. Bocquillet, M.N. Ichchou, L. Jezequel, Energetics of axisymmetric fluid-filled pipes up to high frequencies, Journal of Fluids and

Structures 17 (2003) 491–510.



ARTICLE IN PRESS
M.N. Ichchou et al. / Journal of Sound and Vibration 305 (2007) 931–944944
[9] J.-M. Mencik, M.N. Ichchou, Multi-mode propagation and diffusion in structures through finite elements, European Journal of

Mechanics—A/Solids 24 (5) (2005) 877–898.

[10] Y. Yong, Y.K. Lin, Propagation of decaying waves in periodic and piecewise periodic structures of finite length, Journal of Sound and

vibration 129 (2) (1989) 99–118.

[11] J.-M. Mencik, M.N. Ichchou, Wave finite elements in guided elastodynamics with internal fluid, International Journal of Solids and

Structures 44 (7–8) (2007) 2148–2167.

[12] D.W. Miller, A. von Flotow, A travelling wave approach for power flow in structural networks, Journal of Sound and Vibration 128

(1) (1989) 145–162.

[13] Y. Lase, M.N. Ichchou, L. Jezequel, Energy flow analysis of bars and beams: theoretical formulations, Journal of Sound and Vibration

192 (1996) 281–305.


	Guided waves group and energy velocities via finite elements
	Introduction
	Brief outline of the formulation
	Finite element wave propagation in a straight structure
	Aliasing effects

	Group velocities and energy velocities
	Group velocity expression
	Energy velocity expression

	Numerical experiments
	Aliasing effects
	Energy densities
	Group and energy velocities comparison: test with a small subsystem length
	Group and energy velocities comparison: test with a large subsystem length

	Conclusions
	References


